

SCHOOL of DATA SCIENCE

Introduction

The widely-sweeping COVID-19 pandemic has exposed systemic inadequacies that result in racial minorities bearing an unfair share of the burden¹. Numerous publications reference the social inequities in COVID diagnoses on their own^{2,3}, or inspect clinical/medical outcomes and determinants of concurrent ischemic stroke and COVID⁴.

Our work to examine demographic differences in those with concurrent COVID-19 and stroke through N3C represents an exploratory analysis into one of the largest repositories of national COVID-19 data and sheds light into the demographic and structural factors that impact clinical outcomes and disparities that must be addressed in healthcare. We aim to see if there are any racial discrepancies in medical resource allocation among COVID-19 positive and stroke patients.

Methodology

Our dataset consisted of multiple rounds of cleaning divided into two main stages:

Planned Analyses were Conducted:

Data on patient's race/ethnicity, comorbidities, treatments administered (Remdesivir and ECMO) and insurance information was analyzed using various exploratory data methods and visualizations. Multivariable logistic regression was utilized to model the relationship between variables (dependent/independent) in the cohorts. Model

complexity was analyzed using the F test of significance.

Stroke and COVID Population: A Health Equity Analysis

1. University of Virginia; 2. Spelman College; 3. Howard University

Research Question

Is there equity of patient care in people with concurrent ischemic stroke and COVID positivity?

We found the N3C data to be useful in studying a distinct group of patients, and exploring COVID-19 and ischemic stroke treatment across patients' race/ethnicity identities and insurance status. Our exploratory analysis provides a foundation for further insight into demographic trends and discrepancies in apportionment of treatment.

Insurance Type Proportions in Payer Plan Sub-Cohort

Race/Ethnicity Proportions by Insurance Type

Ethan Assefa¹, Suliah Apatira², Esau Hutcherson³, Rehan Javaid¹, Dahnielle Milton², Suchetha Sharma¹, Johanna Loomba¹, Donald Brown¹

Race & Ethnicit

Age Distribution by Race/Ethnicity

Comorbidities & Deaths

Mortality Proportion across Race/Ethnicity

Regression Model

ECMO Outcome Model

oefficients	Estimate	Std. Error	Z-Value	p-value	OR
on-Hispanic	1.6402	0.8805	1.863	0.06250	5.156
A Non-Hispanic	-0.5692	0.6218	-0.951	0.35999	0.566
c/Latino Any Race	-0.1548	0.6180	-0.250	0.80228	0.857
on-Hispanic	-16.3493	11258.0034	-0.001	0.99884	7.936039e-08
d	-2.0340	0.6595	-3.084	0.00204	0.131
е	-18.7708	1444.7406	-0.013	0.98963	7.046189e-09

* White Non-Hispanic set as reference group for race/ethnicity **Other Insurance set as reference for insurance type

Conclusions: distribution minorities

Limitations:

Future Work:

Acknowledgements

The analyses described in this presentation were conducted with data or tools accessed through the NCATS N3C Data Enclave https://covid.cd2h.org and N3C Attribution & Publication Policy v 1.2-2020-08-25b supported by NCATS U24 TR002306 and supported in part by the National Center for Advancing Translational Science of the National Institutes of Health Award UL1TR003015. This research was possible because of the patients whose information is included within the data and the organizations (https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories) and scientists who have contributed to the on-going development of this community resource [https://doi.org/10.1093/jamia/ocaa196]. Internship support was provided by Deloitte and Oracle.

1.	Centers
	race/eth
	data/inve
2.	Golestar
	associat
3.	Mountan
	COVID-2
	sudden o
4.	Qureshi,
	stroke ar

Conclusions & Discussions

 The Remdesivir regression had no significant results and was not included; the ECMO model was adjusted for race/ethnicity and insurance type

Black/AA have the highest comorbidities, and a younger

 Asian Non-Hispanics have the highest mortality rates and ECMO treatment, the lowest average comorbidities and an older age distribution compared to other

 Medicaid patients had lower odds of obtaining ECMO (p < .01), there was no significant difference in Remdesivir treatment

Black/AA Non-Hispanic make up the largest proportion of Medicaid and Medicaid & Other insurance groups, while White Non-Hispanic make up the largest proportion of Medicare, Medicare & Supplemental, and private insurance (Other Insurance)

• The dependent variables do not consist of all possible or probable treatments for COVID or stroke; ECMO, for example, is only given when the patient is in critical condition which doesn't apply to all patients. Without a measure of stroke or COVID severity we were unable to adjust for this.

• Data was not consistent across difference data partners and sources, some variables (such as insurance) were systematically missing from some health institutions and/or locations

• Use a larger and more nationally-representative dataset • Expand to hemorrhagic stroke

• Consider more covariates within regression models (e.g. severity of COVID-19 and the severity of stroke)

 Health equity analysis across other demographic groups (e.g. patient sex)

Consider other treatments as outcomes (e.g.

Dexamethasone or immune-based therapies,

convalescent plasma)

 Examine COVID-19 vaccination distribution and equity in accessibility to vaccines

References

s for Disease Control and Prevention. (n.d.). *Risk for Covid-19 infection, hospitalization, and death by* hnicity. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/covidvestigations-discovery/hospitalization-death-by-race-ethnicity.html.

aneh, L., Neugarten, J., Fisher, M., Billett, H. H., Gil, M. R., Johns, T., ... & Bellin, E. (2020). The ation of race and COVID-19 mortality. *EClinicalMedicine*, 25, 100455.

ntonakis, S. E., Epstein, L. M., Coleman, K., Martinez, J., Saleh, M., Kvasnovsky, C., ... & Northwell -19 Research Consortium. (2021). The association of structural inequities and race with out-of-hospital death during the COVID-19 pandemic. Circulation: Arrhythmia and Electrophysiology, 14(5), e009646. i, A. I., Baskett, W. I., Huang, W., Shyu, D., Myers, D., Raju, M., ... & Shyu, C. R. (2021). Acute ischemic and COVID-19: an analysis of 27 676 patients. *Stroke*, *52*(3), 905-912.

Ghazi, L., Osypuk, T. L., MacLehose, R. F., Luepker, R. V., & Drawz, P. E. (2021). Neighborhood Socioeconomic Status, Health Insurance, and CKD Prevalence: Findings From a Large Health Care System. *Kidney Medicine*, *3*(4), 555-564.