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Abstract - Credit card fraud is a costly problem for 
banks and a major frustration for consumers. As such, 
static models to detect fraud that rely on supervised 
training are exposed to the risk of being learned and 
circumvented. Previous adversarial learning work in 
fraud prevention showed increased effectiveness over 
static models that did not account for changing fraudster 
behavior. We extend this work by utilizing 
Reinforcement Learning and framing the fraudster and 
card issuer interaction as a Markov Decision Process 
(MDP) and performing prediction and control. Our 
MDP takes on the perspective of an agent (in this case 
the fraudster with a stolen credit card) who interacts 
with an environment (merchants and a fraud classifier), 
by taking actions (transactions), and receiving rewards 
(relating to whether the transactions were 
successful/declined). This approach allows us to simulate 
fraudulent episodes in such a way that techniques like 
model-free policy iteration can identify an optimal policy 
for the fraudster. The episode ends when the card is 
terminated by the credit card company for fraud. We 
found that, compared to a static classifier, making small 
changes to our fraud classifier on a regular basis led to a 
significant decrease in the ability of a fraud agent to 
learn an optimal policy. 
  
 
Index Terms – Adversarial Learning, Consumer Credit 
Fraud Detection, Markov Decision Process, Monte Carlo 
Policy Control, Reinforcement Learning 

INTRODUCTION 

In 2016, credit card fraud resulted in losses of $22 billion 
globally [1]. To prevent such losses, present-day fraud 
models can be simplified to a classification problem where 
the outcome is a probability that any given transaction is 
classified as fraud. Credit card companies must walk a fine 
line between minimizing the number of instances where a 
customer’s card gets declined (false positive) and allowing 
fraudulent transactions (false negatives). Hence, credit card 
firms need to strike a balance between the volume of 
flagged transactions and losses due to fraud, especially as 
consumers expect safety and surety from their credit card 
company.  

The normal fraud detection paradigm is that of a static 
model that acts as a filter for these fraud and non-fraud 
transactions. However, given the costly nature of credit card 

fraud and the ease with which stolen credit card data can be 
obtained from the dark web, reality paints a picture of a 
highly contentious interaction between fraudsters and the 
financial institutions. Fraudsters attempt to defeat the fraud 
detection models and are constantly adapting their strategies 
to maximize stolen dollars. As fraudsters learn the classifier 
and chip away at its effectiveness, data scientists at credit 
card companies spend large amounts of time and money to 
combat their efforts. 

We advocate moving away from the static model 
paradigm into a different perspective whereby modeling will 
take into account the behavior of the adversary. The 
competitive advantage of modeling adversary behavior lies 
with the financial institution being able to learn and adapt to 
changing fraud strategies and react accordingly. 

Thus far, adversarial approaches have been primarily 
applied to game theory, a popular modeling method 
commonly used in economics and psychology focusing on 
groups of entities interacting with one another. We present a 
novel framework for studying credit card fraud that includes 
an MDP model of fraudster decisions and an active defense 
by the lender. This approach simulates the manner in which 
a fraudster learns how to beat a classifier by implementing 
states, actions, and rewards that resemble the risks and 
payoffs that fraudsters actually experience. We also disrupt 
the adversary’s learning process, altering classifier 
probability classification thresholds at regular intervals to 
effectively limit the amount of successful fraud. 

RELATED WORKS 

Adversarial learning is a subfield of machine learning that 
focuses on the ability of an actor to generate high-volume, 
low-cost observations to prod the capabilities of a classifier. 
Given the abundance of data and its industry applications, a 
decent amount of the work in adversarial learning has been 
in the area of spam detection [2][3]. Nelson et al 
demonstrated that an adversary with access to even 1% of 
the training set could adapt their fraud creation and 
effectively render a working classifier ineffective [2]. Dalvi 
et al implemented a game theoretic framework that had a 
classifier take the adversary’s best actions into account, 
greatly increasing their model’s predictive power [3]. 

Credit card fraud detection has a number of particularly 
important similarities to spam detection including large 
class imbalances, a similar amount of high-volume 
observations that can be generated at low cost, and the 
burden that comes in the domain of computer security: 



malicious actors that want to fool the classifier. Recent work 
from Zeager et al. has applied the game theoretic approach 
to credit card fraud detection and found that adversary-
trained classifiers with retrainings performed better than 
static classifiers [4]. Much of their work builds upon 
literature relating to spam filters, in particular work by Liu 
and Chawla that rigorously modeled the adversarial problem 
as a non-cooperative Stackelberg game [5]. 

The literature is sparser when it comes to the 
application of reinforcement learning for problems in 
adversarial learning. Much of the work today is focused on 
modelling an adversary that works to prevent a 
reinforcement learning agent from successfully training to 
an optimal policy (training-focused approach). This is 
slightly different from our work, in which the reinforcement 
learning agent itself is going to be an adversary to a 
classifier and the training process is unmolested (classifier-
focused approach). Pinto et al use the training-focused 
approach to generate a reinforcement learning agent that 
performs better in testing than agents that had been trained 
without the aid of an adversary [6]. More in line with our 
work, Shen et al framed the problem of adversaries 
attacking a cyber security network into a MDP [7]. They 
found that the MDP improved their modeling of adversary 
actions. 

DATA 

The data set used in this paper was provided by a major 
financial institution. The data set contains nearly 86 million 
observations which are anonymized credit card 
transactions.  There are 69 attributes within the data set, one 
of which is the response variable, a fraud indicator labeled 
as either “Y” or “N”. The other attributes range from 
transaction level data such as transaction amount, merchant 
category code, distance between the transaction and home, 
and account level data such as account balance, account 
opening date, days since phone number change on account, 
and other account related features.  The dataset was large 
enough that we built a set of 25 randomly-sampled sets of 
the transaction history of 3,000 credit card accounts. On 
average, each of these sets had 100,000 transactions and all 
of these sets contained some fraud. 

One of the immediate issues with our data was a 
significant class imbalance. In our dataset, fraud makes up 
~0.1% of all credit card transactions. This means that we 
must sample intelligently so as to train our models in such a 
way that fraud is not completely swamped. To this end, we 
downsampled the non-fraud transactions to achieve an 
~15% fraud representation during our model-building 
step.  We performed downsampling as opposed to 
upsampling because of the relative softening of demand on 
computing power and also because of the perceived 
homogeneity in the accounts that did not experience fraud. 

METHODS 

Our analysis is rooted primarily in reinforcement learning. 
In contrast to supervised and unsupervised methods, the 

reinforcement learning approach has no labels or clusters, 
but rather simulates episodes that produce strings of rewards 
which are used as signal for updating the model. The overall 
goal of the agent is to maximize their cumulative expected 
reward. Figure 1 demonstrates the general algorithm that is 
being followed. An agent (the fraudster), is in a state. It 
interacts with the environment (the fraud classifier), by 
taking an action (entering a transaction). The environment 
processes the action and returns some feedback to the agent 
in the form of a new state (the new status of the stolen credit 
card), and a reward (good or bad depending on if the 
transaction was accepted or declined). Policy control is a 
process that can be implemented to teach the fraudster the 
best transactions to take in any given state such that they 
maximize their cumulative expected reward.  
 

 
FIGURE I 

REINFORCEMENT LEARNING WITH MDPS 
 

Credit card fraud lends itself well to the reinforcement 
learning paradigm. In our experiments, the fraudster (agent) 
is trying to determine the best set of transactions (actions) to 
steal as much money as possible by beating the bank’s fraud 
classifier (environment). This novel approach allows us to 
simulate the learning process for an adversary in an 
environment meant to mimic the real world and closely 
aligned with actual fraudster incentives.  

The above scenario can be expressed more compactly 
as an MDP. MDPs are composed of a set of states, a set of 
actions, a set of rewards, a probability transition function, 
and a discount factor. In our formulation, these are as 
follows: 
• States: a 2-tuple representing the [number of low $-

amount transactions, number of high $-amount 
transactions] taken on a card. This is limited to a max of 
5 total transactions. 

• Actions: either to take a low $-amount transaction or a 
high $-amount transaction 

• Rewards:  
o -50 for the first transaction taken on the card 

(representing the cost of stealing the card) 
o +5 for a successful low $-amount transaction 
o +50 for a successful high $-amount transaction 
o 0 when the transaction is declined and the card is 

shut off by the credit card company 
• Discount Factor: 1 
• Probability Transition Function: not explicitly defined; 

implicitly represented with the fraud classifier 
 



We used +5 as the reward for a successful low $-
amount transaction as it represents the 25th percentile of 
transaction amount in our fraud dataset. The +50 reward 
comes from the 75th percentile. The discount factor of 1 is 
common when dealing with a finite horizon problem. We 
limit the total number of transactions on the card to 5 before 
being declined in order to limit the size of the state space. 
This means that if the number of low $-amount transactions 
+ the number of high $-amount transactions = 5, the next 
transaction will be declined regardless of the classifier. This 
is another way of implicitly saying that all fraud will be 
caught after 5 transactions (which is true for 84% of fraud-
compromised accounts in our dataset). 

We built a logistic regression model to act as the fraud 
classifier environment designed to interpret state and action 
information coming from the agent. This fraud classifier is 
fairly simple with just 3 predictors: # of low $-amount 
transactions, # of high $-amount transactions, and whether 
the action is a low or high $-amount. We used $15 as the 
cutoff for a low/high $-amount transaction based on median 
transaction amount across all fraudulent transactions in the 
dataset. We trained our model using data from one of the 25 
random samples across accounts by randomly selecting an 
account, and then randomly selecting a sequence of five 
contiguous transactions from that account. We achieved the 
undersampling of non-fraud by only sampling from 
accounts that contained fraud. 

An episode of our reinforcement learning algorithm 
represents the complete case starting from when an 
adversary purchases the information of a compromised 
credit card (with the state [0, 0]), followed by the adversary 
making their first transaction and receiving their first reward 
corresponding to an accept/decline from the classifier. This 
process repeats from the new state until the credit card 
reaches the decline state. 

Finding the best action to take from any given state is a 
process called policy control. Our work implemented the 
Monte Carlo policy control algorithm in Python. Broadly 
speaking, Monte Carlo is used to describe any method of 
estimation with significant randomness. In policy control, 
the basic idea is that the model learns from experience, 
using sequences of states, actions, and rewards generated by 
simulating your MDP across many episodes. As specific 
state-action pairs are observed over the course of many 
episodes, a running average of their total reward is recorded 
and updates are made each time that state and action is 
visited. Equations (1) and (2) correspond to this process. 
Once enough episodes have been compiled, the actual 
policy is extracted by following the action from each state 
that corresponds to the largest Q state-action value. This is 
shown in (3). It can be shown that as the number of sampled 
episodes approaches infinity, the policy converges on 
optimality. In our experiments, we ran 200 episodes of the 
credit card which was sufficient for finding the optimal 
policy. 
 

𝑁 𝑆#, 𝐴# = 	𝑁 𝑆#, 𝐴# + 1        (1) 

𝑄 𝑆#, 𝐴# = 	𝑄 𝑆#, 𝐴# + +
,(./,0/)

∗ 𝐺# − 𝑄 𝑆#, 𝐴#  (2) 
𝜋 𝑆# = argmax

;Î<=
𝑄(𝑆#, 𝑎)        (3) 

 
One of the principle concerns in our work was with 

how quickly the agent finds the optimal policy. That is, how 
many episodes (stolen credit cards) does it take for an 
adversary to converge on the best policy. To test this we 
took our logistic regression fraud classifier and varied the 
classification threshold (the value at which the model 
declares a transaction either fraud or not fraud), between 0 
and 1 and calculated the total value associated with the 
optimal policy (how much money the fraudster could steal). 
Armed with this knowledge we found the region of 
classification thresholds that were sensitive to precision and 
recall (that is, not all false positives or all false negatives). 
We then went back and trained the agent again in ten 
separate trials, this time varying the classification thresholds 
randomly at regular intervals during the training process and 
evaluating the performance of the fraudster after each 
episode. This allowed us to see the relative effectiveness 
between different rates of classification threshold change. 
We tried a variety of different rates, changing the 
classification threshold every 1, 2, 4, 8, 16, 32, 64, and 200 
episodes. 

RESULTS 

Our experimental classifier was trained on the credit card 
dataset and tested on a held-out dataset randomly sampled 
from the original dataset. Figure II shows the effectiveness 
of our classifier in a Receiver Operating Characteristics 
(ROC) curve. Despite only using three predictive features 
when the original space had 68, the model still has 
reasonable predictive power with an AUC of 0.64. 
 

 
FIGURE II 

AN ROC CURVE DEMONSTRATING THE EFFECTIVENESS OF OUR FRAUD 
CLASSIFIER 

 
Then our classifier was used to train the fraud agent 

through interaction with the environment at different 
classification thresholds. Once the optimal policy was 
reached, the total value of the policy was recorded, as was 



the number of episodes it took to converge on the optimal 
policy. Figure III shows the total value in dollars accrued by 
following the optimal policy at different classification 
thresholds. When the classification threshold is sufficiently 
low, then all transactions are counted as fraud and any 
transactions the fraudster puts on the card are promptly 
declined (as are all real transactions, it should be noted). 
When the classification threshold is sufficiently high, all 
transactions are successful and it is in the fraudster’s best 
interest to make as many large transactions as possible. In 
between there is a small region where the behavior is 
slightly more nuanced. It is in this small region that the 
actual fraud classifier would operate, and these are the 
classification thresholds we used when varying our classifier 
at regular intervals to confuse the fraudster. 
 

 
FIGURE III 

THE DOLLARS ACCRUED BY FOLLOWING THE OPTIMAL POLICY LEARNED AT 
DIFFERENT MODEL CLASSIFICATION THRESHOLDS 

 
Figure IV shows our efforts at trying to fool the 

fraudster by regularly varying the classification threshold. 
The curve shows the amount of money that the fraudster 
would be able to steal following their best understanding of 
the classifier at that time. The dashed vertical lines represent 
the episodes in which the classification threshold was 
changed. The horizontal dashed lines represent the 
maximum possible dollar amount that the fraudster could 
have successfully stolen by following the optimal policy for 
a given classification threshold. So the difference between 
the curve and the max dollar value at that classification 
threshold is the opportunity that was missed by the 
fraudster. We can see that in this case, the fraudster 
struggles to reach the max possible value for any specific 
classification threshold. It’s briefly able to achieve the 
optimal behavior at around episode 100 for classification 
threshold 0.2, but then the classification threshold changes 
and it loses its edge. Then at the end with episodes 180 
onwards, we see that the fraudster has found the best policy 
for classification threshold 0.19.    
 

 
FIGURE IV 

AN EXAMPLE PLOT OF THE FRAUDSTER ATTEMPTING TO LEARN TO BEAT 
THE CLASSIFIER ACROSS 200 EPISODES 

 
We gathered our results at a high level in Figure V, 

which shows the performance across ten trials of the 200-
episode fraudster training process at a variety of different 
classification threshold rates of change. This graph displays 
the percent of opportunity that the fraudster was able to 
capture at the end of each episode where -$50 is a baseline 
as that is the worst that the fraudster could do. For example, 
if in a single episode the fraudster could have possibly made 
$125 following the best series of actions for a particular 
classification threshold but only made $50, then that would 
result in a captured value of 0.57.  Starting from the right, it 
appears that when the classification threshold is never 
changed (the static 200 episode case), the fraudster learns 
the best policy fairly quickly and then never needs to 
deviate from it. However, once we vary the classification 
threshold every 64 episodes, the median moves down and 
the fraudster captures less of the possible value. This trend 
continues into the 32 and 16 episodes cases. This is in line 
with our hypothesis that models that are varied less often are 
much more at risk of being exploited and learned by a 
dedicated adversary. Particularly interesting though is the 
general plateauing of effectiveness once we reach 
classification threshold changes every 16 episodes or less. 
That is, it seems that a fraudster which is dealing with the 
classifier being changed every episode seems to be about as 
successful as a fraudster dealing with the classifier being 
changed every 2, 4, 8 or 16 episodes, implying a 
diminishing return for changing the classifier too often. 
 



 
FIGURE V 

ACROSS TEN TRIALS, THE PERFORMANCE OF THE ADVERSARY ON A PER-
EPISODE BASIS AS A PROPORTION OF THEIR ABILITY TO CAPTURE THE MAX 

DOLLAR VALUE POSSIBLE 
 

CONCLUSIONS 

We successfully translated the adversarial interaction 
between a fraudster and credit card company into an MDP. 
Although the state, action, and reward spaces are fairly 
simple, we were able to achieve predictive power in our 
classifier and train a fraud agent to exploit the weaknesses 
in the classifier. This represents a significant change from 
the typical assumptions-heavy game-theoretic 
implementations towards a more flexible framework that 
can simulate over many more scenarios. 

Our research also found a strong relationship between 
making small, regular changes to a classifier and an 
associated decrease in the ability of a fraud agent to learn 
the best policy for maximizing successful fraudulent 
transactions. We found that the effectiveness of this 
technique is somewhat limited and that changing the 
classifier too often does not significantly improve our 
method’s performance. These important findings have 
serious implications for credit cards and the consumer 
lending industry at large as fraud techniques become more 
powerful and nuanced, requiring data scientists to leverage 
more powerful methods that can adequately hobble a 
fraudster’s learning process. 

Possible future work is considerable. Rather than 
focusing on a specific classification threshold, the modeler 
could replace the logistic regression classifier with other 
models such as Random Forests, KNNs, Support Vector 
Machines, etc. Different models might be stronger against 
certain fraud profiles and swapping models regularly could 
be confusing to the adversary. Similarly, hyperparameters 
could be shifted instead of classification thresholds to 
observe the effect on the fraudster’s effectiveness. In our 
analysis, model classification thresholds were swapped at 
random and at regular intervals. This swapping could be 
done in a more methodical manner or at irregular intervals. 
Currently our model makes particularly simplistic 

assumptions about the state and action space available to the 
fraudster. In reality a fraud adversary has control over things 
like their distance from home when they make a transaction, 
the merchant category code of their purchase, and a more 
granular control of the dollar amount of the transaction to 
name only a few. Including these features would certainly 
contribute to an increase in the performance of the 
classifiers. Finally, one last consideration is the choice of 
algorithm used to accomplish policy control. Our work used 
Monte Carlo given its easy interpretation and 
implementation, but SARSA and Q-learning are methods 
that tend to learn more quickly and with greater accuracy 
that could be implemented and may more closely represent 
the speed at which a human fraudster would actually learn. 
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