Aiying Zhang

Mobile: (352)-281-9166 Email: aiying.zhang@nyspi.columbia.edu LinkedIn: linkedin.com/in/aiying-zhang-16068212b Homepage: https://aiying0512.github.io/ 722 West 168th street, R217, New York, NY10032 Mental Health Data Science Division New York State Psychiatric Institute Columbia University Irving Medical Center

AUG 2023 – PRESENT

ACADEMIC APPOINTMENTS

Assistant Professor of Data Science (tenure-track) School of Data Science, University of Virginia

Education

Columbia University	AUGUST 2023
Postdoc Training in Clinical Biostatistics and Psychiatry, Columbia University Irving Medical Center	ER
Tulane University	May 2021
Ph.D. in Biomedical Engineering, School of Science and Engineering	GPA 3.81/4.0
Dissertation: Study brain functional connectivity using graphical models	
Committee members: Yu-Ping Wang (Chair), Donald P. Gaver, Department of Biomedical Engineering	
Jihun Hamm, Department of Computer Science	
Hongwen Deng, Department of Biostatistics and Data Science	
Research Field: Brain imaging, Imaging (epi)genetics	
Concentration: Network analysis, Probabilistic graphical models (directed/ undirected)	
University of Science and Technology of China (USTC)	Jun 2014
B.Sc. in Statistics, School for the Gifted Young	GPA 3.63/4.0

Research Experience

Research Scientist II	New York State Psychiatric Institute
Mental Health Data Science Division	July 2021 – Present
Mentor: Seonjoo Lee	
Cognitive Development & Neuroimaging Laboratory	Feb 2022 – Present
Mentor: Rachel Marsh	
Research Assistant	Tulane University
Department of Biomedical Engineering	Jan 2016 – May 2021
Mentor: Yu-Ping Wang	
Research Assistant	University of Florida
Department of Biostatistics	Aug 2014 – Dec 2015

PUBLICATIONS

First Author

Zhang, A., Cai, B., Hu, W., Jia, B., Liang, F., Wilson, T. W., Stephen, J. M., Calhoun, V. D. and Wang, Y.-P. (2020). Joint Bayesian-incorporating estimation of multiple Gaussian graphical models to study brain connectivity development in adolescence. IEEE transactions on medical imaging. vol. 39, no. 2, pp. 357-365.

Zhang, A., Fang, J., Hu, W., Calhoun, V. D., and Wang, Y.-P. (2019). A Latent Gaussian Copula Model for Mixed Data Analysis in Brain Imaging Genetics. IEEE/ACM transactions on computational biology and bioinformatics. vol. 18, no. 4, pp. 1350-1360.

Zhang, A., Fang, J., Liang, F., Calhoun, V. D. and Wang, Y.-P.(2019). Aberrant Brain Connectivity in Schizophrenia Detected via a Fast Gaussian Graphical Model. IEEE journal of biomedical and health informatics. vol. 23, no. 4, pp. 1479-1489.

Zhang, A., Zhang, G., Calhoun, V. D. and Wang, Y.-P. (2020, March). Causal brain network in schizophrenia by a two-step Bayesian network analysis. In Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications (Vol. 11318, p. 1131817). International Society for Optics and Photonics.

Zhang, A., Calhoun, V. D. and Wang, Y.-P. (2019, March). Joint Gaussian copula model for mixed data with application to imaging epigenetics study of schizophrenia. In Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications (Vol. 10954, p. 109540R). International Society for Optics and Photonics.

Zhang, A., Fang, J., Calhoun, V. D. and Wang, Y.-P. (2018, April). High dimensional latent Gaussian copula model for mixed data in imaging genetics. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) (pp. 105-109).

Zhang, A., Jia, B. and Wang, Y.-P. (2018, March). Tracking the development of brain connectivity in adolescence through a fast Bayesian integrative method. In Medical Imaging 2018: Imaging Informatics for Healthcare, Research, and Applications (Vol. 10579, p. 1057900). International Society for Optics and Photonics.

Co-Author

Zhang, G., Cai, B., **Zhang, A.**, Tu, Z., Xiao, L., Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y. P. (2022). Detecting abnormal connectivity in schizophrenia via a joint directed acyclic graph estimation model. NeuroImage, 260, 119451.

Cai, B., Zhou, Z., **Zhang, A.**, Zhang, G., Xiao, L., J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. (2022) Functional connectomes incorporating phase synchronization for the characterization and prediction of individual differences. Journal of Neuroscience Methods, 372, 109539.

Cai, B., Zhang, G., **Zhang, A.**, Xiao, L., Hu, W., Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. (2021) Functional connectome fingerprinting: Identifying individuals and predicting cognitive functions using refined brain connectivity. Human Brain Mapping 42.9, 2691-2705.

Hu, W., Meng, X., Bai, Y., **Zhang, A.**, Cai, B., Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. (2021) Interpretable multimodal fusion networks reveal mechanisms of brain cognition. IEEE Transactions on Medical Imaging, vol. 40, no. 5, pp. 1474-1483.

Xiao, L., **Zhang, A.**, Cai, B., Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. (2021) Correlation Guided Graph Learning to Estimate Functional Connectivity Networks from fMRI Data. IEEE Transactions on Biomedical Engineering, vol. 68, no. 4, pp. 1154-1165.

Zhou Z., Cai, B., Zhang, G., **Zhang, A.**, Calhoun, V. D. and Wang, Y.-P. (2021) Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fMRI. NeuroImage, 221, 117-190.

Cai, B., Zhang, G., **Zhang, A.**, Hu, W., Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. (2020). A GICA-TVGL framework to study sex differences in resting state fMRI dynamic connectivity. Journal of Neuroscience Methods, 332, p.108531.

Cai, B., Zhang, G., Hu, W., **Zhang, A.**, Zille, P., Zhang, Y., Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. (2019). Refined measure of functional connectomes for improved identifiability and prediction. Human brain mapping,

40(16), pp.4843-4858.

Zhang, G., Cai, B., **Zhang, A.**, Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. (2020). Estimating Dynamic Functional Brain Connectivity with a Sparse Hidden Markov Model. IEEE transactions on medical imaging, vol. 39, no. 2, pp. 488-498.

Hu, W., **Zhang**, A., Cai, B., Calhoun, V. D. and Wang, Y.-P. (2019). Distance canonical correlation analysis with application to an imaging-genetic study. Journal of Medical Imaging, 6(2), 026501.

Hu, W., Cai, B., **Zhang, A.**, Calhoun, V. D. and Wang, Y.-P. (2019). Deep collaborative learning with application to multimodal brain development study. IEEE Transactions on Biomedical Engineering, 66(12), 3346-3359.

Cai, B., Zhang, G., **Zhang, A.**, Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. (2018). Capturing dynamic connectivity from resting state fMRI using time-varying graphical LASSO. IEEE Transactions on Biomedical Engineering, 66(7), 1852-1862.

Zhang, G., **Zhang, A.**, Calhoun, V. D. and Wang, Y.-P. (2020, February). A causal brain network estimation method leveraging Bayesian analysis and the PC algorithm. In Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging (Vol. 11317, p. 113170X). International Society for Optics and Photonics.

Under Review

Sun, L., **Zhang**, A., Liang, F. Consistent Dynamic Bayesian Network Learning for a fMRI Study of Emotion Processing. Submitted to Annals of the Applied Statistics.

Zhang, A., Pagliaccio, D., Marsha, R., Lee, S. Decoding Age-specific Changes in Brain Functional Connectivity Using a Sliding-window Based Clustering Method. Submitted to Human Brain Mapping.

Zhang, A., Zhang, G., Cai, B., Xiao, L., Hu, W., Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. Functional Connectivity Estimation using Correlation-guided Bayesian Network to Understand Cognitive Ability Variations. Submitted to Human Brain Mapping.

Under Preparation

Zhang, A., Zhang, G., Cai,B., Stephen, J. M., Wilson, T. W., Calhoun, V. D. and Wang, Y.-P. A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence.

Zhang, A., Zhu X., Wrengler, K., Horga, G., Goldberg, T., Lee, S. Distinct hierarchical alterations of intrinsic neural timescales account for mild cognitve impairment (MCI) to Dementia.

TEACHING EXPERIENCE

Advisor of Undergraduate Research, Department of Biomedical Engineering	Tulane University
Student: Jason Dent	Jan 2018 – Dec 2018
Thesis: Using a Multilayer Perceptron to Categorize fMRI Data	
Teaching Assistant, Department of Biostatistics	University of Florida
Biostatistical Computing with SAS	Sep 2015 - Dec 2015
• Prepared lectures for lab sessions using SAS and conducted discussions with students	
Graded, provided correct homework solutions, provided office hours	
Advanced Biostatistical Methods	Sep 2015 - Dec 2015
• Conducted homework discussions with students weekly	

• Graded, provided correct homework solutions, provided office hours

Presentations

Invited Talk
School of Data Science, March 24, 2023, Charlottesville, VA
Study Brain Functional Connectivity Development In Adolescence Using Graphical Models
ENAR 2023, March 21, 2023, Nashville, TN.
A High-dimensional multi-exposure mediation model to unravel brain structure-functional interactions
ImgFun workshop at Colorado University Biostatistics, Virtual Presentation, Mar 16, 2023.
A Joint Directed Acyclic Graph Estimation Model to Detect Aberrant Brain Connectivity in Schizophrenia
Department of Statistics at University of Kentucky, Oct 28, 2022, Lexington, KY
A Joint Directed Acyclic Graph Estimation Model to Detect Aberrant Brain Connectivity in Schizophrenia
Department of Psychiatry at University of Pittsburgh, Virtual Presentation, Mar 17, 2021.
Study Brain Functional Connectivity Using Graphical Models
Department of Electrical and Computer Engineering at Rice University, Virtual Presentation, Jan 12, 2021.
Study Brain Functional Connectivity Using Graphical Models
Mental Health Data Science at Coulumbia University, Virtual Presentation, Jan 8, 2021.
Study Brain Functional Connectivity Development in Adolescence Using Graphical Models
Department of Biostatistics at Coulumbia University, Virtual Presentation, Dec 3, 2020.
A Latent Gaussian Copula Model for Data Integration and Its Application in Imaging Genetics
The Cole Neurocognition Lab at Rutgers University, Virtual Presentation, Nov 23, 2020.
Study Brain Functional Connectivity Using Graphical Models
Contributed Presentations
OHBM Annual Meeting, Virtual Presentation, Jun 6 - 7, 2022
Decoding Age-specific Changes in Brain Functional Connectivity Using a Sliding-window Based Clustering Method
9th Annual Tom R. Ten have Symposium on Statistics in Mental Health, Jun 3, 2022, New York, NY, USA.
New Adcances in Statistics and Data Science, May 25, 2022, Honolulu, HI, USA.
A Sliding-window based Clustering Method to Decode Age-Specific Changes in Brain Functional Connectivity
Joint Statistical Meetings (JSM), Virtual Presentation, August 4th, 2020.
A Bayesian Incorporated Linear Non-Gaussian Acyclic Model (BiLiNGAM) for Multiple Directed Acyclic Graph
Estimation with application to causal brain connectivity using fMRI (#313970)
OHBM Annual Meeting, Virtual Presentation, June 23 - July 3, 2020.
Causal functional brain network: An advanced approach to study brain cognitive variance (#1068)
SPIE Medical Imaging, Feb 17, 2020, Houston, TX, USA.
Estimation of a causal brain network in schizophrenia via a two-step Bayesian network analysis (#11318-40)
SPIE Medical Imaging, Feb 18, 2019, San Diego, CA, USA
Joint Gaussian copula model for mixed data with application to imaging epigenetics study of schizophrenia
(#10954-26)
IEEE ISBI 2018, Apr 5, 2018, Washington, D.C., USA
High dimensional latent Gaussian copula model for mixed data in imaging genetics (#551)
SPIE Medical Imaging, Feb 14, 2018, Houston, TX, USA
Tracking the development of brain connectivity in adolescence through a fast Bayesian integrative method (#10579-20)
OHBM Annual Meeting, June 28, 2017, Vancouver, BC, CA.

Discovery of aberrant brain connectivity networks associated with Schizophrenia using a high-dimensional Gaussian Graphical Model (#4028)

Campus Presentations

School of Science and Engineering (SSE) Research Day, April 11, 2019

High Dimensional Latent Gaussian Copula Model for Mixed Data in Imaging Genetics

Tulane Health Sciences Research Days (HSRD), Feb 20-21, 2017

Discovery of Aberrant Brain Connectivity in Schizophrenia using Gaussian Graphical Models

SSE Research Day, April 6, 2017

Discovery of Aberrant Brain Connectivity in Schizophrenia using Gaussian Graphical Models

SERVICE TO PROFESSION

Editorial Coordinator of Technometrics, American Statistician Association (ASA).	2014 - 2015
Volunteer of K-12 STEM Education Outreach	2017 - 2021
Abstract Triage for the Neuromatch Conference	2020
Reviewer for Medical Image Analysis (MedIA)	
Reviewer for IEEE transactions on Medical Imgaing (TMI)	
Reviewer for IEEE transactions on Network Sience and Engineering (TNSE)	
Reviewer for IEEE transactions on Pattern Analysis and Machine Intelligence (PAMI)	
Reviewer for IEEE/ACM transactions on Computational Biology and Bioinformatics (TCBB)	

RSEARCH GRANT SUPPORT

Funded Projects at Columbia and NYSPI

 NIH R01MH124106 (PI: Ying Liu) A Data Science Framework for Empirically Evaluating and Deriving Reproducible and Transferrable RDoC Constructs in Youth, \$3,351,397, 09/01/2020-06/30/2025, Role: Data Analyst
NIH R01AG062578 (PI: Seonjoo Lee) Statistical method for neural mechanism mediating and moderating cognitive

system in Alzheimer's disease and aging research, \$2,086,831, 01/15/2020-12/31/2024, Role: Data Analyst

Funded Projects at Tulane

1. NIH R01MH121101, (PI: Tony Wilson) Developmental Multimodal Imaging of Neurocognitive Dynamics (Dev-MIND), 08/19/2019 – 05/31/2024, \$5,783,563 , Role: Graduate Research Assistant

2. NIH R01GM109068 (PI: Yu-Ping Wang) Integration of multiscale genomic data for comprehensive analysis of complex disease, \$1,608,775, 09/17/2014 – 08/31/2019, Role: Graduate Research Assistant

3. NSF 1539067, (PI: Vince Calhoun) RII Track-2 FEC: Developmental Chronnecto-Genomics (Dev-CoG): A Next Generation Framework for Quantifying Brain Dynamics and Related Genetic Factors in Childhood, \$5,858,210.00, 08/01/2015-07/30/2019, Role: Graduate Research Assistant

4. NIH R01MH104680, (PI: Yu-Ping Wang) Integration of brain imaging with genomic and epigenomic data, \$2,071,571, 08/01/2014 - 07/31/2018, Role: Graduate Research Assistant

Submitted Grant as PI

1. NIH Pathway to Independence Award (PA-20-188)

NIH K99MH133984, Uncovering developmental connectomics deviation in obsessive-compulsive and anxiety disorders over child and adolescent leveraging multi-modal brain imaging, Status: Scientific Review Group review pending.

2. NIH Director's Early Independence Awards (RFA-RM-21-018)

NIH DP5OD033432, Integrating multimodal imaging and genetics to identify mechanistic pathways underlying children's neurocognitive development, Criteria Score: 35.

Honors and Rewards

2021 Chinese Government Award for Outstanding Self-financed Students Abroad, China Scholar Council	2022
2021 Biomedical Engineering Graduate Student Outstanding Achivement Award, Tulane University	2021
GSSA Travel Award, Tulane University	2017 - 2020
Certificate of Outstanding Academic Achievement, University of Florida	2014 - 2015
Outstanding Student Scholarship, USTC	2011 - 2013
Outstanding Freshman Scholarship, USTC	2010

Related Training

SHARP Traing Program: Skills for Health and Research Professionals	Aug 11-12, 2022
Organization: Columbia University Mailman School of Public Health	
Certification: Mendelian Randomization Boot Camp: A Practical Guide to Study Design and Impler	mentation
Woman in Neuroscience	July 8-10, 2019
Organization: Brown University, Dartmouth College, Montana State University and University of N	levada at Reno
Content: Elevator Pitch Talk Training	
Deep Learning by deeplearning.ai	March 22, 2019
Platform: Coursera	
Certification: Completion of five interconnected courses, which are Neural Networks and Deep Lean	rning, Improving Deep
Neural Networks: Hyperparameter tuning, Regularization and Optimization, Structuring Machine Le	earning Projects,
Convolutional Neural Networks, and Sequence Models.	
Biostatistics Summer Institutes in Statistical Genetics (SISG) and Statistics in Big Data (SISBID)	JULY 11-29, 2016
Organization: University of Washington, Seattle	
Certification: Completion of Quantitative Genetics and Supervised Methods for Statistical Machine	Learning
CCNS: Computational Neuroscience Summer School	JULY 27-31, 2015
Organization: The Statistical and Applied Mathematical Sciences Institute (SAMSI)	
Content: Courses on five major research topics in computational neuroscience, including neural spik	ce train analysis,
compressed sensing for signal processing, functional data analysis for medical imaging data, big-bion	nedical data integration
and analysis, shape analysis and diffeomorphisms for medical imaging data.	
Membership	
Member of American Statistician Association (ASA)	2015 DRESENT

Member of American Statistician Association (ASA).	2015 - present
Member of SPIE, the international society for optics and photonics	2018 - present

Skills

Languages C/C++, Fortran, Matlab, Python, R, SAS, SPSS, SQL, STATA Tools Linux/Unix, LATEX