Shahab Azarfar

jut6nm@virginia.edu

Research Interests

Geometric and Probabilistic Deep Learning, Physics-Informed Machine Learning, Equivariant Representation Learning, Computational Optimal Transport Theory, Koopman Operator approach to Dynamic Data Analysis, Manifold Learning, Kernel methods in Machine Learning.

Research Experience

May 2023 -	Postdoctoral Research Associate,		
	Mentor: Prof. Stephen Baek		
	School of Data Science, University of Virginia.		
May 2022 - Apr. 2023	Postdoctoral Research Associate,		
	Mentors: Prof. Heman Shakeri and		
	Prof. Mohammad Fallahi-Sichani,		
	School of Data Science and Biomedical Engineering Department,		
	University of Virginia.		

Investigated Topics:

- Modeling the drug-response of a cancer cell population at the single-cell level through Optimal Transport theory and kernel-based Distribution Regression
- Connections between the dynamics of the intracellular chemical reaction networks and the Koopman operator theory

Jan Jun. 2020	Postdoctoral Fellow,
	Mentor: Prof. Matilde Marcolli,
	Mathematics Department, University of Toronto.

Investigated Topics:

- Connections between Dynamic Optimal Transport theory / Schrödinger bridge and generative statistical models.
- Geometric information theory in statistical inference and neural network training.
- Geometric models of primary visual cortex in neuroscience.

Sep. 2018 - Aug. 2019	Postdoctoral Research Associate,
	Mentor: Prof. Masoud Khalkhali,
	Mathematics Department, University of Western Ontario

Investigated Topics:

- Asymptotic eigenvalue distribution of particular large random matrix models originated from quantum gravity.
- Combinatorics of graphs embedded on Riemann surfaces with nontrivial topology corresponding to the above-mentioned matrix models.
- Applications of Random Matrix Theory in Quantum Information Theory, in particular, investigation of data transmission through noisy quantum channels.

Education

2014 - 2018	Ph.D. , Applied Mathematics and Mathematical Physics, University of Western Ontario, Canada
2012 - 2014	M.Sc. , Applied Mathematics and Mathematical Physics, Concordia University, Canada
2008 - 2011	M.Sc. , Mechanical Engineering, Tehran Polytechnic, Iran
2004 - 2008	B.Sc. , Mechanical Engineering, Tehran Polytechnic, Iran

List of Publications

- 1. Azarfar, S., & Khalkhali, M., Random Finite Noncommutative Geometries and Topological Recursion, under review at Annales de l'Institut Henri Poincaré (D). (PDF)
- Cheng, X., Zhang, S., Nguyen, P., Azarfar, S., Chern, G., & Baek, S., Convolutional Neural Networks for Large-Scale Dynamical Modeling of Itinerant Magnets, under review at Physical Review Research. (PDF)
- 3. Topological Recursion and Random Finite Noncommutative Geometries, Ph.D. Thesis (2018), Supervisor: Prof. M. Khalkhali. (PDF)
- 4. On Variational Formulas on Spaces of Quadratic Differentials, M.Sc. Thesis (2014), Supervisor: Prof. D. Korotkin. (PDF)
- Geometric Structure of Hamiltonian Dynamics, M.Sc. Thesis (2011), Supervisor: Prof. N. Boroojerdian. (in Persian)

Attended Summer Schools

- Algebraic Geometry in High-Energy Physics, University of Saskatchewan, Saskatoon, Canada, 2019.
- *Random Matrix Theory*, Institute for Advanced Study/Park City Mathematics Institute, Utah, USA, 2017.
- Dyson-Schwinger Equations, Topological Expansions, and Random Matrices, Columbia University, New York, USA, 2017.

Selected Talks

- Blobbed Topological Recursion for Dirac Ensembles, Fields Institute for Research in Mathematical Sciences, 2022.
- The Wiener Measure, Brownian Bridge, and Feynman-Kac Formula, University of Western Ontario, 2017.
- A Generalization of the Heisenberg Commutation Relation, University of Western Ontario, 2016.
- The Dimension of the Space of Automorphic Forms and the Riemann-Roch Theorem, University of Western Ontario, 2016.
- The Selberg Trace Formula, University of Western Ontario, 2015.
- On the Proof of Weyl Integration Formula, University of Western Ontario, 2015.

Programming	Skills	Python, MATLAE

Teaching Experience

Winter 2020	Instructor, Mathematics Department, University of Toronto	
	Course Title: Applications of Linear Programming	
Winter 2013	Instructor, Mathematics Department, Concordia University	
	Course Title: Fundamental Concepts of Algebra	
2012 - 2018	Teaching Assistant , Mathematics Department, Concordia University and University of Western Ontario	
	Course Titles: Real Analysis I, Methods of Calculus, Methods of Finite Mathematics, Methods of Matrix Algebra	

References

- Prof. Stephen Baek University of Virginia, baek@virginia.edu
- Prof. Matilde Marcolli California Institute of Technology, matilde@caltech.edu
- Prof. Masoud Khalkhali University of Western Ontario, masoud@uwo.ca
- Prof. Heman Shakeri University of Virginia, hs9hd@virginia.edu
- Prof. Mohammad Fallahi-Sichani University of Virginia, fallahi@virginia.edu